
Micromega Corporation 1 R20040429

Using the uM-FPU
with the BASIC Stamp

Introduction

The uM-FPU is a 32-bit floating point coprocessor that can be easily interfaced with the BASIC Stamp
BS2, BS2e, BS2sx, BS2p24, BS2p40 or BS2pe to provide support for 32-bit IEEE 754 floating point
operations and long integer operations. The uM-FPU is easy to connect, and requires only two pins on the
BASIC Stamp. The only external component required for operation is a protection resistor on the
bidirectional data line.

uM-FPU Features

ÿ 8-pin integrated circuit.
ÿ Bi-directional serial interface requires only two wires for connection.
ÿ Sixteen 32-bit general purpose registers for storing floating point or long integer values
ÿ Five 32-bit temporary registers with support for nested calculations (i.e. parenthesis)
ÿ Floating Point Operations

ß Set, Add, Subtract, Multiply, Divide
ß Sqrt, Log, Log10, Exp, Exp10, Power, Root
ß Sin, Cos, Tan
ß Asin, Acos, Atan, Atan2
ß Floor, Ceil, Round, Min, Max, Fraction
ß Negate, Abs, Inverse
ß Convert Radians to Degrees
ß Convert Degrees to Radians
ß Compare, Status

ÿ Long Integer Operations
ß Set, Add, Subtract, Multiply, Divide, Unsigned Divide
ß Negate, Abs
ß Compare, Unsigned Compare, Status

ÿ Conversion Functions
ß Convert 8-bit and 16-bit integers to floating point
ß Convert 8-bit and 16-bit integers to long integer
ß Convert long integer to floating point
ß Convert floating point to long integer
ß Convert floating point to ASCII
ß Convert floating point to formatted ASCII
ß Convert long integer to ASCII
ß Convert long integer to formatted ASCII
ß Convert ASCII to floating point
ß Convert ASCII to long integer

ÿ Full set of BASIC Stamp support routines provided for easy implementation.

Connecting

Micromega Corporation 2 Using the uM-FPU with the BASIC Stamp

Connecting the uM-FPU to the BASIC Stamp

The uM-FPU requires just two pins for interfacing to the BASIC Stamp. The communication is
implemented using a bidirectional serial interface that requires a clock pin and a data pin. The default
setting for these pins are:

FpuClock PIN 15
FpuData PIN 14

The settings for these pins can be changed to suit your application. The support routines assume that the
uM-FPU chip is always selected, so the FpuClock and FpuData pins should not be used for other
connections as this will likely result in loss of synchronization between the BASIC Stamp and the uM-FPU
coprocessor.

uM-FPU Pin Assignment

Floating Point Routines

Micromega Corporation 3 Using the uM-FPU with the BASIC Stamp

Using the uM-FPU Floating Point Routines

A full set of support routines is provided to handle all of the communication between the BASIC Stamp
and the uM-FPU. The template file uM-FPU.BS2 contains all of the definitions and support code. This file
can be used directly as the starting point for a new program, or the definitions and support code can be
copied from this file to another program. Each uM-FPU support routine is described in detail in a reference
guide included as Appendix A of this document.

In order to ensure that the BASIC Stamp and the uM-FPU coprocessor are synchronized, a reset call must
be done at the start of every program. The FPU_Reset routine resets the uM-FPU, confirms
communications, and sets the variable fStatus to 1 if successful, or 0 if the reset fails. A sample reset call is
included in the uM-FPU.BS2 file. An example of a typical reset is as follows:

GOSUB FPU_Reset 'reset the FPU hardware
IF fStatus = 0 THEN
 DEBUG "uM-FPU not detected."
 END
ENDIF

The uM-FPU contains sixteen 32-bit registers, numbered 0 through 15, which are used to store floating
point or long integer values. Register 0 is reserved for use as a working register and is modified by some of
the uM-FPU operations. Registers 1 through 15 are available for general use.

Arithmetic operations on the uM-FPU are defined in terms of A and B registers. For example:

Fset A = B
Fadd A = A + B
Fsqrt A = sqrt(A)
Fsin A = sin(A)

Any of the sixteen registers can be selected as the A or B registers. The variables fA and fB are used to
select the A and B registers prior to calling one of the arithmetic routines. For example, the following code
adds register 2 to register 1.

fA = 1 'select register 1 as the A register
fB = 2 'select register 2 as the B register
GOSUB Fadd 'A = A + B

Using constant definitions to provide meaningful names for the registers can create a more readable
program.

Total CON 1 'total amount (uM-FPU register 1)
Count CON 2 'current count (uM-FPU register 2)

fA = Result 'result = result + count
fB = Count
GOSUB Fadd

Floating Point Routines

Micromega Corporation 4 Using the uM-FPU with the BASIC Stamp

The following floating point routines are provided:

Fabs A = |A|
Facos A = acos (A)
Fadd A = A + B
Fasin A = asin(A)
Fatan A = atan(A)
Fatan2 A = atan2(A)
Fceil A = ceil(A)
Fcompare Compare A and B
Fcos A = cos(A)
Fdivide A = A / B
Fexp A = exp(A)
Fexp10 A = exp10(A)
Ffix A = fix(B)
Ffloor A = floor(A)
Fget Get the value of A
FgetStatus Get the floating point status of A
Finverse A = 1 / A
Flog A = log(A)
Flog10 A = log10(A)
Fmax A = maximum of A and B
Fmin A = minimum of A and B
Fmultiply A = A * B
Fnegate A = -A
Fpower A = A to the power of B
Froot A = the Bth root of A
Fround A = round(A)
Fset A = B
Fsin A = sin(A)
Fsqrt A = sqrt(A)
Fsubtract A = A – B
Ftan A = tan(A)
FtoDegrees Convert radians to degrees
FtoRadians Convert degrees to radians

Note: All of the floating point routines start with a capital F prefix.

The following example implements the equation Z = SQRT(X**2 + Y**2). The equation is broken into
several steps: the X value is squared (multiplied by itself), the Y value is squared, the Z value is set to the
sum of the squares, and the square root function is called to get the final result.

Xvalue CON 1 'X value (uM-FPU register 1)
Yvalue CON 2 'Y value (uM-FPU register 2)
Zvalue CON 3 'Z value (uM-FPU register 3)

 fA = Xvalue 'X = X ** 2
 fB = Xvalue
 GOSUB Fmultiply

 fA = Yvalue 'Y = Y ** 2
 fB = Yvalue
 GOSUB Fmultiply

Floating Point Routines

Micromega Corporation 5 Using the uM-FPU with the BASIC Stamp

 fA = Zvalue 'Z = X + Y
 fB = Xvalue
 GOSUB Fset
 fB = Yvalue
 GOSUB Fadd

 GOSUB Fsqrt 'Z = sqrt(Z)

The value of fA is not changed by the uM-FPU support routines. If multiple operations are performed on
the same register it isn’t necessary to set fA each time, only when it needs to change. For example:

fA = Result 'Result = sqrt(Value1 + Value2 + Value3)
fB = Value1
GOSUB Fset
fB = value2
GOSUB Fadd
fB = value3
GOSUB Fadd
GOSUB Fsqrt

Loading Floating Point Values

The PBASIC compiler does not provide support for floating point number syntax, so floating point values
must be entered using alternate methods. A handy utility program called uM-FPU Converter is
available to convert between 32-bit floating point values and hexadecimal values. There are several ways
to load floating point values into the uM-FPU. Support routines are provided to:

Load_FloatByte Load 8-bit signed integer and convert to floating point
Load_FloatUByte Load 8-bit unsigned integer and convert to floating point
Load_FloatWord Load 16-bit signed integer and convert to floating point
Load_FloatUWord Load 16-bit unsigned integer and convert to floating point
Load_Float Load floating point value directly in the code
Load_FloatData Load floating point value from EEPROM
Load_FloatStr Load ASCII string from EEPROM and convert to floating point
Load_Zero Load the floating point value 0.0
Load_One Load the floating point value 1.0
Load_E Load the floating point value of e (2.7182818)
Load_Pi Load the floating point value of pi (3.1415927)

Each of these routines loads the floating point value into Register 0 and sets fB to 0. This is very
convenient since it allows an arithmetic operation to follow immediately using the newly loaded value as
the B value. For example:

Load an word value:

fA = Result
fLow = 20 'set fLow to the 16-bit integer value
GOSUB Load_FloatByte 'load the 8-bit integer value
GOSUB Fadd 'Result = Result + 20

Load a floating point value directly in code:

fA = Angle 'set fHigh is to the high 16-bits
fHigh = $41A0 ' of the floating point value 20.0
fLow = $0000 'set fLow is to the low 16-bits
GOSUB Load_Float 'load the floating point value
GOSUB Fset 'Angle = 20.0

Floating Point Routines

Micromega Corporation 6 Using the uM-FPU with the BASIC Stamp

Load floating point value from EEPROM:

Pi DATA $40, $49, $0F, $DB 'pi = 3.1415927

fA = Angle 'set fAddr to the EEPROM address
fAddr = Pi ' of the floating point constant
GOSUB Load_FloatData 'load the floating point constant
GOSUB Fmultiply 'Angle = Angle * pi

Load ASCII string from EEPROM:

PiStr DATA "3.145927", 0 'zero terminated string

fA = Result 'set fAddr to the EEPROM address
fAddr = PiStr ' of the zero terminated string
GOSUB Load_FloatStr 'load the floating point string
GOSUB Fset 'Result = 3.145927

Load Zero:

fA = Result
GOSUB Load_Zero
GOSUB Fset 'Result = 0.0

Load Pi:

fA = Result
GOSUB Load_Pi
GOSUB Fset 'Result = 3.1415927

In many cases it makes sense to load all the initial values for the uM-FPU registers at the start of the
program or before a particular section of code. The FPU_Preload routine makes this easy to do. It takes
the address of a preload vector as a parameter, and loads the uM-FPU with the specified values.
For example:

F0_75 CON 2 'constant 0.75 (uM-FPU register 2)
Result CON 5 'result (uM-FPU register 5)
E CON 14 'constant E (uM-FPU register 14)
F100_0 CON 15 'constant 100.0 (uM-FPU register 15)

PreloadVector DATA F0_75
 DATA $3F, $40, $00, $00 '0.75
 DATA E
 DATA $40, $2D, $F8, $54 '2.7182818 (e)
 DATA F100_0
 DATA $42, $C8, $00, $00 '100.0
 DATA 0

fAddr = PreloadVector 'set fAddr to the EEPROM address
GOSUB FPU_Preload ' of the preload vector and load values

fA = Result 'Result = ((Result * E) + .75) / 100.0
fB = E
GOSUB Fmultiply
fB = F0_75
GOSUB Fadd
fB = F100_0

Floating Point Routines

Micromega Corporation 7 Using the uM-FPU with the BASIC Stamp

GOSUB Fdivide

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. The Load_FloatByte routine transfers one 8-bit value, the
Load_FloatWord routine transfers two 8-bit values, the Load_Float and Load_FloatData routines transfer
four 8-bit values, and the Load_FloatStr routine transfers 8-bits for each character in the string (including
the zero terminator). Minimizing the amount of data transfer will maximize the execution speed of your
program.

Comparing and Testing Floating Point Values

A floating point value can be zero, positive, negative, infinite or Not a Number (which occurs if an invalid
operation is performed on a floating point value). To check the status of a floating point number the
FgetStatus routine is used. The FgetStatus routine sets the fStatus variable with the status of the selected
register. A bit definition is provided for each status bit in the fStatus variable. They are as follows:

fStatus_Zero Zero status bit (0-not zero, 1-zero)
fStatus_Sign Sign status bit (0-positive, 1-negative)
fStatus_NaN Not a Number status bit (0-valid number, 1-NaN)
fStatus_Inf Infinity status bit (0-not infinite, 1-infinite)

For example:

fA = Result
GOSUB FgetStatus
IF (fStatus_Sign = 1) THEN DEBUG "Result is negative"
IF (fStatus_Zero = 1) THEN DEBUG "Result is zero"

The Fcompare routine is used to compare two floating point values. The status bits are set for the results of
the operation A – B. (The selected A and B registers are not modified). For example:

 fA = Value1 'compare Value1 and Value2
 fB = Value2
 GOSUB Fcompare

 IF (fStatus_Zero = 1) THEN
 DEBUG "Value1 = Value2"
 ELSEIF (fStatus_Sign = 1) THEN
 DEBUG "Value1 < Value2"
 ELSE
 DEBUG "Value1 > Value2"
 ENDIF

Long Integer Routines

Micromega Corporation 8 Using the uM-FPU with the BASIC Stamp

Using the uM-FPU Long Integer Routines

Any of the sixteen uM-FPU registers can be used to store long integer values. The support routines for
long integers work in exactly the same manner as the floating point routines and are defined in terms of the
A and B registers. For example:

Total CON 1 'total amount (uM-FPU register 1)
Count CON 2 'current count (uM-FPU register 2)

fA = Result 'result = result + count
fB = Count
GOSUB Ladd '(long addition)

The following long integer routines are provided:

Labs A = |A|
Ladd A = A + B
Lcompare Compare A and B
Ldivide A = A / B
Lfloat A = float(A)
Lget Get the value of A
LgetStatus Get the long integer status of A
Lmultiply A = A * B
Lnegate A = -A
Lset A = B
Lsubtract A = A – B
Lucompare Compare A and B (unsigned)
Ludivide A = A / B (unsigned)

Note: All of the long integer routines start with a capital L prefix.

Loading Long Integer Values

There are several ways to load long integer values into the uM-FPU. Support routines are provided to:
Load_LongByte Load 8-bit signed integer and convert to long integer
Load_LongUByte Load 8-bit unsigned integer and convert to long integer
Load_LongWord Load 16-bit signed integer and convert to long integer
Load_LongUWord Load 16-bit unsigned integer and convert to long integer
Load_Long Load long integer values directly in the code
Load_LongData Load long integer value from EEPROM
Load_LongStr Load ASCII string from EEPROM and convert to long integer
Load_Zero Load the long integer value 0

Each of these routines loads the long integer value into Register 0 and sets fB to 0. This is very convenient
since it allows an arithmetic operation to follow immediately using the newly loaded value as the B value.
For example:

Load an byte value:

fA = Result
fLow = 20 'set fLow to the 16-bit integer value
GOSUB Load_LongByte 'load the 8-bit integer value
GOSUB Ladd 'Result = Result + 20

Long Integer Routines

Micromega Corporation 9 Using the uM-FPU with the BASIC Stamp

Load a long integer value directly in code:

fA = Value 'set fHigh is to the high 16-bits
fHigh = $0007 ' of the long integer value 500,000
fLow = $A120 'set fLow is to the low 16-bits
GOSUB Load_Long 'load the floating point value
GOSUB Lset 'Value = 500000

Load long integer value from EEPROM:

L500K DATA $00, $07, $A1, $20 'constant 500,000

fA = Value 'set fAddr to the EEPROM address
fAddr = L500K ' of the floating point constant
GOSUB Load_LongData 'load the floating point constant
GOSUB Lmultiply 'Value = Value * 500000

Load ASCII string from EEPROM:

L500KStr DATA "500000", 0 'zero terminated string

fA = Result 'set fAddr to the EEPROM address
fAddr = L500KStr ' of the zero terminated string
GOSUB Load_LongStr 'load the floating point string
GOSUB Lset 'Result = 500000

Load Zero:

fA = Result
GOSUB Load_Zero
GOSUB Lset 'Result = 0

The FPU_Preload routine can also be used to load long integer values. See the reference guide for a full
description.

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. The Load_FloatByte routine transfers one 8-bit value, the
Load_FloatWord routine transfers two 8-bit values, the Load_Float and Load_FloatData routines transfer
four 8-bit values, and the Load_FloatStr routine transfers 8-bits for each character in the string (including
the zero terminator). Minimizing the amount of data transfer will maximize the execution speed of your
program.

Long Integer Routines

Micromega Corporation 10 Using the uM-FPU with the BASIC Stamp

Comparing and Testing Long Integer Values

A long integer value can be zero, positive, or negative. To check the status of a long integer number the
LgetStatus routine is used. The LgetStatus routine sets the fStatus variable with the status of the selected
register. A bit definition is provided for each status bit in the fStatus variable. They are as follows:

fStatus_Zero Zero status bit (0-not zero, 1-zero)
fStatus_Sign Sign status bit (0-positive, 1-negative)

For example:

fA = Result
GOSUB LgetStatus
IF (fStatus_Sign = 1) THEN DEBUG "Result is negative"
IF (fStatus_Zero = 1) THEN DEBUG "Result is zero"

The Lcompare and Lucompare routines are used to compare two long integer values. It results in the status
bits being set for the results of the operation A – B. (The selected A and B registers are not modified). The
Lcompare does a signed compare and the Lucompare does an unsigned compare. For example:

 fA = Value1 'compare Value1 and Value2
 fB = Value2
 GOSUB Lcompare

 IF (fStatus_Zero = 1) THEN
 DEBUG "Value1 = Value2"
 ELSEIF (fStatus_Sign = 1) THEN
 DEBUG "Value1 < Value2"
 ELSE
 DEBUG "Value1 > Value2"
 ENDIF

Print Routines

Micromega Corporation 11 Using the uM-FPU with the BASIC Stamp

Left and Right Parenthesis

Mathematical equations are often expressed with parenthesis to define the order of operations. For
example Y = (X-1) / (X+1). The expressions inside the parentheses often need to be assigned to a
temporary value before they can be used with other expressions in the equation. Temporary values are also
useful to preserve the original value of a variable used in an equation. The left and right parenthesis
operators provide a convenient means of allocating temporary values.

When a left parenthesis is issued, the current value of fA is saved and a new value is assigned that
references a temporary register. Operations can now be performed as normal with the temporary register
selected as the A register. When a right parenthesis is issued, the current value of the A register is copied
to register 0, and fB is set to zero, and the previous value of fA is restored. The value can be used
immediately in subsequent operatons. Up to five levels of parentheses can be used. In most situations, the
fA variable should not be changed by the user’s code inside parentheses since the value of fA is
automatically set by the left and right parentheses operators.

In the example shown earlier for the equation Z = sqrt(X**2 + Y**2), the values of X and Y were
modified during the calculation. Using parenthesis, it’s easy to implement the equation while retaining the
original values of X and Y. For example:

Xvalue CON 1 'X value (uM-FPU register 1)
Yvalue CON 2 'Y value (uM-FPU register 2)
Zvalue CON 3 'Z value (uM-FPU register 3)

 fA = Zvalue 'Z = X ** 2
 fB = Xvalue
 GOSUB Fset
 GOSUB Fmultiply

 GOSUB Left 'temp1 = Y ** 2
 fB = Yvalue
 GOSUB Fset
 GOSUB Fmultiply

 GOSUB Right 'Z = Z + temp1
 GOSUB Fadd

 GOSUB Fsqrt 'Z = sqrt(Z)

The following example shows Y = 10 / (X + 1):

Xvalue CON 1 'X value (uM-FPU register 1)
Yvalue CON 2 'Y value (uM-FPU register 2)

fA = Yvalue 'Y = 10
fLow = 10
GOSUB Load_FloatByte
GOSUB Fset

GOSUB Left 'temp1 = X + 1
fB = Xvalue
GOSUB Fset
GOSUB Load_One
GOSUB Fadd

GOSUB Right 'Y = Y / temp1
GOSUB Fdivide

Print Routines

Micromega Corporation 12 Using the uM-FPU with the BASIC Stamp

Print routines

There are several print routines provided to display register values on the PC screen.

Print_Float displays floating point value on the PC screen
Print_FloatFormat dsiplays formatted floating point value on the PC screen
Print_Long displays signed long integer on the PC screen
Print_LongFormat displays formatted long integer on the PC screen
Print_Hex displays 32-bit hexadecimal value on the PC screen
Print_Version displays the uM-FPU version string on the PC screen

The following examples assume that Angle contains the floating point value 3.1415927 and Total contains
the long integer value –2000.

fA = Angle 'displays Angle in default float format
GOSUB Print_Float

Value displayed: 3.1415927

fA = Angle 'display Angle in 6.2 float format
Fformat = 62
GOSUB Print_FloatFormat

Value displayed: 3.1416

fA = Total 'displays Total in default long format
GOSUB Print_Long

Value displayed: -2000

fA = Total 'display Total in long format
Fformat = 10 'signed, width of 10
GOSUB Print_LongFormat

Value displayed: -2000

fA = Total 'display Total in long format
Fformat = 110 'unsigned, width of 10
GOSUB Print_LongFormat

Value displayed: 4294965296

fA = Angle 'display Angle in hex format
GOSUB Print_Hex

Value displayed: $4049 0FDB

GOSUB Print_Version ‘display uM-FPU version
Value displayed: uM-FPU V1.0

Sample Code

Micromega Corporation 13 Using the uM-FPU with the BASIC Stamp

Sample Code

'The following example takes an integer value representing the diameter
'of a circle in centimeters, converts the value to inches and
'calculates the circumference and area in inches and square inches.
'Note: the uM-FPU definitions and support routines are not shown.

'-------------------- constants ---------------------------------------

DiameterIn CON 4 'diameter in inches (uM-FPU register 4)
Circumference CON 5 'circumference (uM-FPU register 5)
Area CON 6 'area (uM-FPU register 6)
Pi CON 7 'constant pi (uM-FPU register 7)
F2_0 CON 8 'constant 2.0 (uM-FPU register 8)
F2_54 CON 9 'constant 2.54 (uM-FPU register 9)

'-------------------- variables ---------------------------------------

diameterCm VAR Byte 'diameter in centimeters

'-------------------- EEPROM data -------------------------------------

PreloadVector DATA Pi
 DATA $40, $49, $0F, $DB 'pi = 3.1415927
 DATA F2_0
 DATA $40, $00, $00, $00 '2.0
 DATA F2_54
 DATA $40, $22, $8F, $5C '2.54
 DATA 0

'==
'-------------------- main routine ------------------------------------
'==

Main:

 DEBUG CR, CR, "Conversion Example"
 DEBUG CR, "------------------", CR

 GOSUB FPU_Reset 'reset the FPU hardware
 IF fStatus = 0 THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB FPU_Version 'display the uM-FPU version number
 DEBUG CR
 ENDIF

 fAddr = PreloadVector 'load floating point initial values
 GOSUB FPU_Preload

 'diameter in centimeters is the input value
 '--
 diameterCm = 25
 DEBUG CR, "Diameter (cm): ", DEC diameterCm

Sample Code

Micromega Corporation 14 Using the uM-FPU with the BASIC Stamp

 'calculate diameter in inches: DiameterIn = diameterCm / 2.54
 '--
 fA = DiameterIn 'convert integer value
 fLow = diameterCm ' to floating point
 GOSUB Load_FloatByte
 GOSUB Fset
 fB = F2_54 'divide by 2.54
 GOSUB fDivide

 DEBUG CR, "Diameter (in.): "
 GOSUB Print_Float 'display the diameter

 'Circumference = DiameterIn * Pi
 '--
 fA = Circumference
 fB = DiameterIn
 GOSUB Fset
 fB = Pi
 GOSUB Fmultiply

 DEBUG CR, "Circumference (in.): "
 GOSUB Print_Float 'display the circumference

 'Area = (DiameterIn / 2)**2 * Pi
 '-------------------------------
 fA = Area 'Area = DiameterIn / 2.0
 fB = DiameterIn
 GOSUB Fset
 fB = F2_0
 GOSUB Fdivide

 fB = fA
 GOSUB Fmultiply 'Area = Area * Area * Pi
 fB = Pi
 GOSUB Fmultiply

 DEBUG CR, "Area (sq.in.): "
 GOSUB Print_Float 'display the area

 DEBUG CR, CR, "Done.", CR 'end of program
 END

Micromega Corporation 15 R20040429

Appendix A
Reference for uM-FPU BASIC Stamp routines

Initialization and Setup Routines
FPU_Reset Reset the uM-FPU and confirm communications
FPU_Preload Load the uM-FPU with initial values stored in EEPROM
FPU_Version Display uM-FPU version string on the PC screen

Left and Right Parentheses
Left Save A register and select new temporary register as A register
Right Return value in register 0 and restore previous A register

Floating Point Routines
Fabs A = |A|
Facos A = acos (A)
Fadd A = A + B
Fasin A = asin(A)
Fatan A = atan(A)
Fatan2 A = atan2(B/A)
Fceil A = ceil(A)
Fcompare Compare A and B
Fcos A = cos(A)
Fdivide A = A / B
Fexp A = exp(A)
Fexp10 A = exp10(A)
Ffix A = fix(B)
Ffloor A = floor(A)
Fget Get the value of A
FgetStatus Get the status of A
Finverse A = 1 / A
Flog A = log(A)
Flog10 A = log10(A)
Fmax A = maximum of A and B
Fmin A = minimum of A and B
Fmultiply A = A * B
Fnegate A = -A
Fpower A = A to the power of B
Froot A = the Bth root of A
Fround A = round(A)
Fset A = B
Fsin A = sin(A)
Fsqrt A = sqrt(A)
Fsubtract A = A – B
Ftan A = tan(A)
FtoDegrees Convert radians to degrees
FtoRadians Convert degrees to radians

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 16 Using the uM-FPU with the BASIC Stamp

Long Integer Routines
Labs A = |A|
Ladd A = A + B
Lcompare Compare A and B
Ldivide A = A / B
Lfloat A = float(A)
Lget Get the value of A
LgetStatus Get the long integer status
Lmultiply A = A * B
Lnegate A = -A
Lset A = B
Lsubtract A = A – B
Lucompare Compare A and B (unsigned)
Ludivide A = A / B (unsigned)

 Load Routines
Load_E Load register 0 with floating point value of e (2.7182818)
Load_Float Load register 0 with floating point value
Load_FloatByte Load register 0 with 8-bit signed integer converted to floating point
Load_FloatData Load register 0 with floating point value in EEPROM
Load_FloatStr Load register 0 with floating point string in EEPROM
Load_FloatUByte Load register 0 with 8-bit unsigned integer converted to floating point
Load_FloatUWord Load register 0 with 16-bit unsigned integer converted to floating point
Load_FloatWord Load register 0 with 16-bit signed integer converted to floating point
Load_Fraction Load register 0 with the fractional portion of A
Load_Long Load register 0 with long integer value
Load_LongByte Load register 0 with 8-bit signed integer converted to long integer
Load_LongData Load register 0 with long integer value in EEPROM
Load_LongStr Load register 0 with long integer string in EEPROM
Load_LongUByte Load register 0 with 8-bit unsigned integer converted to long integer
Load_LongUWord Load register 0 with 16-bit unsigned integer converted to long integer
Load_LongWord Load register 0 with 16-bit signed integer converted to long integer
Load_One Load register 0 with floating point value of 1.0
Load_Pi Load register 0 with floating point value of Pi (3.1415927)
Load_Zero Load register 0 with zero (long integer or floating point)

Print Routines
Print_Float Display floating point value on the PC screen
Print_FloatFormat Display formatted floating point value on the PC screen
Print_Hex Display 32-bit hexadecimal value on the PC screen
Print_Long Display signed long integer value on the PC screen
Print_LongFormat Display formatted long integer value on the PC screen

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 17 Using the uM-FPU with the BASIC Stamp

Variables used as parameters
fA Nib Used to select the A register
fB Nib Used to select the B register
fHigh Word The high 16-bits of a local float or long value
fLow Word The low 16-bits of a local float or long value
fAddr Word EEPROM address for load routines
fFormat Byte Format variable for printing
fStatus Byte Contains the status from last FgetStatus or Fcompare call

Status Bits
fStatus_Zero Zero status bit (0-not zero, 1-zero)
fStatus_Sign Sign status bit (0-positive, 1-negative)
fStatus_NaN Not a Number status bit (0-valid number, 1-NaN)
fStatus_Inf Infinity status bit (0-not infinite, 1-infinite)

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 18 Using the uM-FPU with the BASIC Stamp

Initialization and Setup Routines

FPU_Reset Reset the uM-FPU and confirm communications.

Parameters: none
Return: fStatus = 0 successful reset

fStatus = 1 reset failed

Description: This routine must be called at the start of every application. The uM-FPU is reset to its
startup condition and communication between the BASIC Stamp and the uM-FPU is
confirmed. All uM-FPU registers are initialized to NaN (Not a Number) at reset,
therefore any operation that uses a register before a value has been stored in the register
will produce a result of NaN.

Example:
 GOSUB FPU_Reset 'reset the FPU hardware
 IF fStatus = 0 THEN
 DEBUG "uM-FPU not detected."
 END
 ENDIF

FPU_Preload Load the uM-FPU with initial values stored in EEPROM.

Parameters: fAddr address of preload vector
Return: none

Description: This routine provides a quick way to load the uM-FPU registers with constants or initial
values for variables. The preload vector is stored in EEPROM and has the following
format:

DATA reg, byte1, byte2, byte3, byte4
DATA reg, byte1, byte2, byte3, byte4
DATA 0

reg uM-FPU register number (1 to 15)
byte1 to byte2 32-bit value (byte1 is most significant byte)

Note: A zero terminator is required at the end of the preload vector.
Example:

Pi CON 1 'constant pi (uM-FPU register 1)
F2_0 CON 3 'constant 2.0 (uM-FPU register 3)
F2_54 CON 9 'constant 2.54 (uM-FPU register 9)

PreloadVector DATA Pi
 DATA $40, $49, $0F, $DB '3.1415927
 DATA F2_0
 DATA $40, $00, $00, $00 '2.0
 DATA F2_54
 DATA $40, $22, $8F, $5C '2.54
 DATA 0

 fAddr = PreloadVector 'set fAddr to the EEPROM address
 GOSUB FPU_Preload 'load the values

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 19 Using the uM-FPU with the BASIC Stamp

FPU_Version Display uM-FPU version string on the PC screen.

Parameters: none
Return: none

Description: The uM-FPU version string is read from the uM-FPU and output to the PC screen using
the DEBUG command.

Example:
 GOSUB FPU_Version 'display the uM-FPU version string

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 20 Using the uM-FPU with the BASIC Stamp

Left and Right Parentheses

Left Left Parenthesis

Parameters: none
Return: fA set to temporary register number

Description: The left parenthesis command saves the current value of fA, allocates the next temporary
register, and sets fA to that register number.

Special cases: • the maximum number of temporary registers is five. If the maximum number is
exceeded, the value of register A is set to NaN ($7FC00000).

Example: (see below)

Right Right Parenthesis

Parameters: none
Return: Register 0 last temporary value

fB set to 0

Description: The right parenthesis command copies the value of the current temporary register to
register 0, and sets fB to 0. If this is the last right parenthesis, fA is set to the value before
the first left parenthesis, otherwise it is set to the previous temporary register number.

Special case: • if no left parenthesis is currently outstanding, then the value of register 0 is set to NaN.
($7FC00000).

Example:
Xvalue CON 7 'X value (uM-FPU register 7)
YValue CON 8 'Y value (uM-FPU register 8)
Zvalue CON 9 'Z value (uM-FPU register 9)

 'calculate Z = sqrt(X ** 2 + Y ** 2)
 fA = Zvalue 'fA = Zvalue
 GOSUB Left 'fA = Temp1
 fB = Xvalue 'Temp1 = Xvalue * Xvalue
 GOSUB Fset
 GOSUB Fmultiply
 GOSUB Left 'fA = Temp2
 fB = Yvalue 'Temp2 = Yvalue * Yvalue
 GOSUB Fset
 GOSUB Fmultiply
 GOSUB Right 'fA = Temp1, fB = 0, reg[0] = Temp2
 GOSUB Fadd 'Temp1 = Temp1 + Temp2
 GOSUB Right 'fA = Zvalue, fB = 0, reg[0] = Temp1
 GOSUB Fset 'Zvalue = sqrt(Temp1)
 GOSUB Fsqrt

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 21 Using the uM-FPU with the BASIC Stamp

Floating Point Routines

Fabs A = |A|

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the absolute value of the floating point value in register A, and stores the result
in register A.

Special case: • if the value is NaN, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = |Value|
 GOSUB Fabs

Facos A = acos(A)

Parameters: fA uM-FPU register number
Return: none

Description: Returns the arc cosine of an angle, in the range of 0.0 through pi.

Special case: • if the value is NaN or its absolute value is greater than 1, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Facos(Value)
 GOSUB Facos

Fadd A = A + B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The floating point value in register B is added to the floating point value in register A and
the result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if one value is +infinity and the other is –infinity, then the result is NaN
• if one value is +infinity and the other is not –infinity, then the result is +infinity
• if one value is -infinity and the other is not +infinity, then the result is -infinity

Example:
Pi CON 1 'constant pi (uM-FPU register 1)
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'Angle = Angle + Pi
 fB = Pi
 GOSUB Fadd

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 22 Using the uM-FPU with the BASIC Stamp

Fasin A = asin(A)

Parameters: fA uM-FPU register number
Return: none

Description: Returns the arc sine of an angle, in the range of –pi/2 through pi/2.

Special cases: • if the value is NaN or its absolute value is greater than 1, then the result is NaN
• if the value is 0.0, then the result is a 0.0
• if the value is –0.0, then the result is –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = asin(Value)
 GOSUB Fasin

Fatan A = atan(A)

Parameters: fA uM-FPU register number
Return: none

Description: Returns the arc tangent of an angle, in the range of –pi/2 through pi/2 radians.

Special cases: • if the value is NaN, then the result is NaN
• if the value is 0.0, then the result is a 0.0
• if the value is –0.0, then the result is –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = cos(Value)
 GOSUB Fcos

Fatan2 A = atan2(B/A)

Parameters: fA uM-FPU register number
Return: none

Description: Converts rectangular coordinates (A, B) to polar (r, theta). The value of theta is returned
in register A and is determined by computing the arc tangent of the value of register B
divided by the value of register A, in the range –pi to pi.

Special cases: • if either value is NaN, then the result is NaN
• if B is 0.0 and A > 0, then the result is 0.0
• if B > 0 and finite, and A is +inf, then the result is 0.0
• if B is –0.0 and A > 0, then the result is –0.0
• if B < 0 and finite, and A is +inf, then the result is –0.0
• ifB is 0.0 and A < 0, then the result is pi
• if B > 0 and finite, and A is –inf, then the result is pi
• if B is –0.0, and A < 0, then the result is –pi
• if B < 0 and finite, and A is –inf, then the result is –pi
• if B > 0, and A is 0.0 or –0.0, then the result is pi/2

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 23 Using the uM-FPU with the BASIC Stamp

• if B is +inf, and A is finite, then the result is pi/2
• if B < 0, and A is 0.0 or –0.0, then the result is –pi/2
• if B is –inf, and A is finite, then the result is –pi/2
• if B is +inf, and A is +inf, then the result is pi/4
• if B is +inf, and A is –inf, then the result is 3*pi/4
• if B is –inf, and A is +inf, then the result is –pi/4
• if B is –inf, and A is –inf, then the result ir –3*pi/4

Example:
Val1 CON 5 'current value (uM-FPU register 5)
Val2 CON 5 'current value (uM-FPU register 5)
 fA = Val1 'Val1 = atan(Val2/Val1)
 fB = Val2
 GOSUB Fatan2

Fceil A = ceil(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the floating point value equal to the nearest integer that is greater than or equal
to the floating point value in register A. The result is stored in register A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or -infinity, then the result is +infinity or -infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0
• if the value is less than zero but greater than –1.0, then the result is –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = ceil(Value)
 GOSUB Fceil

Fcompare Compare A and B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: fStatus set to the status of the comparison

Description: Compare the floating point value in register A with the floating point value in register B.
The status of the result is stored in the fStatus variable. The status is positive if the value
in register A is greater than the value in register B. The status is negative if the value in
register A is less than the value in register B. The status is zero if the value in register A
is equal to the value in register B. Bit definitions are used to test the status as follows:

fStatus_Zero Zero status bit (0 if A not equal to B; 1 if A equals B)
fStatus_Sign Sign status bit (0 if A is greater than B; 1 if A is less than B)
fStatus_NaN NaN status bit (0 if valid numbers; 1 if A or B is Not-a-Number)

Special case: • if either value is NaN, then the result is NaN

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 24 Using the uM-FPU with the BASIC Stamp

Example:
Value1 CON 6 'First value (uM-FPU register 6)
Value2 CON 7 'Second value (uM-FPU register 7)

 fA = Value1 'compare Value1 and Value2
 fB = Value2
 GOSUB Fcompare

 IF (Fstatus_Zero = 1) THEN
 DEBUG "Value1 = Value2"
 ELSEIF (Fstatus_Sign = 1) THEN
 DEBUG "Value1 < Value2"
 ELSE
 DEBUG "Value1 > Value2"
 ENDIF

Fcos A = cos(A)

Parameters: fA uM-FPU register number
Return: none

Description: When this routine is called, register A should contain a floating point value representing
the angle in radians. The cosine of the angle is calculated and the result is stored in
register A.

Special case: • if the value is NaN or an infinity, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = cos(Value)
 GOSUB Fcos

Fdivide A = A / B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The floating point value in register A is divided by the floating point value in register B
and the result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if the B value is zero and the A value is not zero, then the result is infinity
• if the B value is infinity, then the result is zero

Example:
Angle CON 5 'current angle (uM-FPU register 5)
F2_0 CON 3 'constant 2.0 (uM-FPU register 6)

 fA = Angle 'Angle = Angle / 2.0
 fB = F2_0
 GOSUB Fdivide

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 25 Using the uM-FPU with the BASIC Stamp

Fexp A = exp(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the value of e (2.7182818) raised to the power of the floating point value in
register A. The result is stored in A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or greater than 88, then the result is +infinity
• if the value is –infinity or less than -88, then the result is 0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = exp(Value)
 GOSUB Fexp

Fexp10 A = exp10(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the value of 10 raised to the power of the floating point value in register A.
The result is stored in A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or greater than 38, then the result is +infinity
• if the value is –infinity or less than -38, then the result is 0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = exp10(Value)
 GOSUB Fexp10

Ffix A = fix(A)

Parameters: fA uM-FPU register number
Return: none

Description: Converts the floating point value in register A to a long integer value and stores the result
in register A.

Special cases: • if the value is NaN, then the result is zero
• if the value is +infinity or greater than the maximum signed long integer, then the result
is the maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
• if the value is –infinity or less than the minimum signed long integer, then the result is
the minimum signed long integer (decimal: -2147483648, hex: $80000000)

Example:
Value CON 3 'current value (uM-FPU register 3)

 fA = Value 'Value contains floating point
 GOSUB Ffloat 'Value is converted to long integer

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 26 Using the uM-FPU with the BASIC Stamp

Ffloor A = floor(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the floating point value equal to the nearest integer that is less than or equal to
the floating point value in register A. The result is stored in register A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or -infinity, then the result is +infinity or -infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = floor(Value)
 GOSUB Ffloor

Fget Get the floating point value of the A register

Parameters: fA uM-FPU register number
Return: fHigh high 16 bits of the floating point value in register A

fLow low 16 bits of the floating point value in register A

Description: The high 16 bits of the floating point value in register A are returned in fHigh and the low
16 bits are returned in fLow.

Example:
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'get the value of Angle
 GOSUB Fget

FgetStatus Get the floating point status of A

Parameters: fA uM-FPU register number
Return: fStatus set to the floating point status of the value in register A

Description: Get the status of the floating point value in register A. The fStatus variable is set to the
status of the value. Four bit definitions are used to test the status as follows:

fStatus_Zero Zero status bit (0 – not zero; 1 – zero)
fStatus_Sign Sign status bit (0 – positive; 1 – negative)
fStatus_NaN NaN status bit (0 – valid number; 1 – Not-a-Number)
fStatus_Inf Infinity status bit (0 – not infinite; 1 – infinite)

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 27 Using the uM-FPU with the BASIC Stamp

Example:
Value CON 3 'current value (uM-FPU register 3)

 fA = Value 'get the status
 GOSUB FgetStatus

 IF (fStatus_NaN = 1) THEN DEBUG "Value is NaN"
 IF (fStatus_Inf = 1) THEN DEBUG "Value is infinite"
 IF (fStatus_Zero = 1) THEN DEBUG "Value is zero"
 IF (fStatus_Sign = 1) THEN DEBUG "Value is negative"

Finverse A = 1 / A

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the inverse of the floating point value in register A, and stores the result in
register A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is zero, then the result is infinity
• if the value is infinity, then the result is zero

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = 1 / Value
 GOSUB Finverse

Flog A = log(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the natural log of the floating point value in register A. The result is stored in
register A. The number e (2.7182818) is the base of the natural system of logarithms.

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = log(Value)
 GOSUB Flog

Flog10 A = log10(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the base 10 logarithm of the floating point value in register A. The result is
stored in register A.

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 28 Using the uM-FPU with the BASIC Stamp

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = log10(Value)
 GOSUB Flog10

Fmax A = maximum of A and B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: Sets the value of register A to the maximum value of register A and register B.

Special cases: • if either value is NaN, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)
F2_0 CON 6 'constant 2.0 (uM-FPU register 6)

 fA = Value 'Value = maximum of Value and 2.0
 fB = F2_0
 GOSUB Fmax

Fmin A = minimum of A and B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: Sets the value of register A to the minimum value of register A and register B.

Special cases: • if either value is NaN, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)
F2_0 CON 6 'constant 2.0 (uM-FPU register 6)

 fA = Value 'Value = minimum of Value and 2.0
 fB = F2_0
 GOSUB Fmin

Fmultiply A = A * B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The floating point value in register A is multiplied by the floating point value in register
B and the result is stored in register A.

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 29 Using the uM-FPU with the BASIC Stamp

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is
NaN
• if either values is infinity and the other is nonzero, then the result is infinity

Example:
Angle CON 5 'current angle (uM-FPU register 5)
F2_0 CON 6 'constant 2.0 (uM-FPU register 6)

 fA = Angle 'Angle = Angle * 2.0
 fB = F2_0
 GOSUB Fmultiply

Fnegate A = -A

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the negative of the floating point value in register A, and stores the result in
register A.

Special case: • if the value is NaN, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = -Value
 GOSUB Fnegate

Fpower A = A to the power of B

Parameters: fA uM-FPU register number (base)
fB uM-FPU register number (exponent)

Return: none

Description: Calculates the value of the floating point value in register A raised to the power of the
floating point value in register B. The result is stored in register A.

Special cases: • if B is 0.0 or –0.0, then the result is 1.0
• if B is 1.0, then the result is the same as the A value
• if B is NaN, then the result is Nan
• if A is NaN and B is nonzero, then the result is NaN
• if |A| > 1 and B is +infinite, then the result is +infinity
• if |A| < 1 and B is -infinite, then the result is +infinity
• if |A| > 1 and B is -infinite, then the result is 0.0
• if |A| < 1 and B is +infinite, then the result is 0.0
• if |A| = 1 and B is infinite, then the result is NaN
• if A is 0.0 and B > 0, then the result is 0.0
• if A is +infinity and B < 0, then the result is 0.0
• if A is 0.0 and B < 0, then the result is +infinity
• if A is +infinity and B > 0, then the result is +infinity
• if A is -0.0 and B > 0 but not a finite odd integer, then the result is 0.0
• if the A is -infinity and B < 0 but not a finite odd integer, then the result is 0.0
• if A is -0.0 and the B is a positive finite odd integer, then the result is –0.0
• if A is -infinity and B is a negative finite odd integer, then the result is –0.0

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 30 Using the uM-FPU with the BASIC Stamp

• if A is -0.0 and B < 0 but not a finite odd integer, then the result is +infinity
• if A is -infinity and B > 0 but not a finite odd integer, then the result is +infinity
• if A is -0.0 and B is a negative finite odd integer, then the result is –infinity
• if A is -infinity and B is a positive finite odd integer, then the result is –infinity
• if A < 0 and B is a finite even integer,
then the result is equal to |A| to the power of B
• if A < 0 and B is a finite odd integer,
then the result is equal to the negative of |A| to the power of B
• if A < 0 and finite and B is finite and not an integer, then the result is NaN

Example:
Value CON 3 'current value (uM-FPU register 3)
Exponent CON 4 'exponent value (uM-FPU register 4)

 fA = Value 'Value = Value ** Exponent
 fB = Exponent
 GOSUB Fpower

Froot A = the Bth root of A

Parameters: fA uM-FPU register number (base)
fB uM-FPU register number (root)

Return: none

Description: Calculates the value of the root of the floating point value in register A. The root is
specified by the floating point value in register B. It is equivalent to raising A to the
power of (1/B). The result is stored in register A.

Special cases: • see the description in Fpower for the special cases of (1/B)
• if B is infinity, then (1/B) is zero
• if B is zero, then (1/B) is infinity

Example:
Value CON 3 'current value (uM-FPU register 3)
Root CON 4 'exponent value (uM-FPU register 4)

 fA = Value 'Value = the Root of Value
 fB = Root
 GOSUB Froot

Fround A = round(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the floating point value that is equal to the nearest integer to the floating point
value in register A. The result is stored in register A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or -infinity, then the result is +infinity or -infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = round(Value)
 GOSUB Fround

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 31 Using the uM-FPU with the BASIC Stamp

Fset A = B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: Sets the value of register A to the value of register B.

Example:
Pi CON 1 'constant pi (uM-FPU register 1)
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'Angle = Pi
 fB = Pi
 GOSUB Fset

Fsin A = sin(A)

Parameters: fA uM-FPU register number
Return: none

Description: When this routine is called, register A should contain a floating point value representing
the angle in radians. The sine of the angle is calculated and the result is stored in register
A.

Special cases: • if the value is NaN or an infinity, then the result is NaN
• if the value is 0.0, then the result is 0.0
• if the value is –0.0, then the result is –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = sin(Value)
 GOSUB Fsin

Fsqrt A = sqrt(A)

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the square root of the floating point value in register A. The result is stored in
register A.

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = sqrt(Value)
 GOSUB Fsqrt

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 32 Using the uM-FPU with the BASIC Stamp

Fsubtract A = A – B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The floating point value in register B is subtracted from the floating point value in
register A and the result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if the A value is +infinity and the B value not +infinity, then the result is +infinity
• if the A value is -infinity and the B value not -infinity, then the result is -infinity
• if the A value is not an infinity and the B value is an infinity, then the result is an
infinity of the opposite sign as the B value

Example:
Pi CON 1 'constant pi (uM-FPU register 1)
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'Angle = Angle - Pi
 fB = Pi
 GOSUB Fsubtract

Ftan A = tan(A)

Parameters: fA uM-FPU register number
Return: none

Description: When this routine is called, register A should contain a floating point value representing
the angle in radians. The tangent of the angle is calculated and the result is stored in
register A.

Special cases: • if the value is NaN or an infinity, then the result is NaN
• if the value is 0.0, then the result is 0.0
• if the value is –0.0, then the result is –0.0

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = tan(Value)
 GOSUB Ftan

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 33 Using the uM-FPU with the BASIC Stamp

FtoDegrees Convert radians to degrees

Parameters: fA uM-FPU register number
Return: none

Description: Converts the floating point value in register A from radians to degrees. The result is
stored in register A.

Special case: • if the value is NaN, then the result is NaN

Example:
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'Angle = Angle in radians
 GOSUB FtoDegrees 'convert Angle to degrees

FtoRadians Convert degrees to radians

Parameters: fA uM-FPU register number
Return: none

Description: Converts the floating point value in register A from degrees to radians. The result is
stored in register A.

Special case: • if the value is NaN, then the result is NaN

Example:
Angle CON 5 'current angle (uM-FPU register 5)

 fA = Angle 'Angle = Angle in degrees
 GOSUB FtoRadians 'convert Angle to radians

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 34 Using the uM-FPU with the BASIC Stamp

Long Integer Routines

Labs A = |A|

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the absolute value of the long integer value in register A, and stores the result
in register A.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = |Value|
 GOSUB Labs

Ladd A = A + B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The long integer value in register B is added to the long integer value in register A and
the result is stored in register A.

Example:
Total CON 5 'total (uM-FPU register 5)
Value CON 6 'current value (uM-FPU register 6)

 fA = Total 'Total = Total + Value
 fB = Value
 GOSUB Ladd

Lcompare Compare A and B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: fStatus set to the status of the comparison

Description: Compare the long integer value in register A with the long integer value in register B.
The status of the result is stored in the fStatus variable. The status is positive if the value
in register A is greater than the value in register B. The status is negative if the value in
register A is less than the value in register B. The status is zero if the value in register A
is equal to the value in register B. Bit definitions are used to test the status as follows:

fStatus_Zero Zero status bit (0 if A not equal to B; 1 if A equals B)
fStatus_Sign Sign status bit (0 if A is greater than B; 1 if A is less than B)

Special case: • if either value is NaN, then the result is NaN

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 35 Using the uM-FPU with the BASIC Stamp

Example:
Value1 CON 6 'First value (uM-FPU register 6)
Value2 CON 7 'Second value (uM-FPU register 7)

 fA = Value1 'compare Value1 and Value2
 fB = Value2
 GOSUB Lcompare

 IF (Lstatus_Zero = 1) THEN
 DEBUG "Value1 = Value2"
 ELSEIF (Lstatus_Sign = 1) THEN
 DEBUG "Value1 < Value2"
 ELSE
 DEBUG "Value1 > Value2"
 ENDIF

Ldivide A = A / B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The long integer value in register A is divided by the long integer value in register B and
the result is stored in register A. If the value in register B is zero (divide by zero),
register A will be set to the largest positive long integer ($3FFFFFFF). The remainder of
the division is stored in register 0.

Example:
Total CON 5 'total (uM-FPU register 5)
Value CON 6 'current value (uM-FPU register 6)
Rem CON 7 'remainder (uM-FPU register 7)

 fA = Total 'Total = Total / Value
 fB = Value
 GOSUB Ldivide

 fA = Rem 'set Rem to the remainder
 fB = 0
 GOSUB Lset

Lfloat A = float(A)

Parameters: fA uM-FPU register number
Return: none

Description: Converts the long integer value in register A to a floating point value and stores the result
in register A.

Example:
Value CON 3 'current value (uM-FPU register 3)

 fA = Value 'Value contains long integer
 GOSUB Ffloat 'Value is converted to floating point

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 36 Using the uM-FPU with the BASIC Stamp

Lget Get the long integer value of the A register.

Parameters: fA uM-FPU register number
Return: fHigh high 16 bits of the long integer value in register A

fLow low 16 bits of the long integer value in register A

Description: The high 16 bits of the long integer value in register A are returned in fHigh and the low
16 bits are returned in fLow.

Example:
Total CON 5 'total (uM-FPU register 5)

 fA = Total 'get the value of Total
 GOSUB Lget

LgetStatus Get the long integer status of A

Parameters: fA uM-FPU register number
Return: fStatus set to the status of the value in register A

Description: Get the status of the long integer value in register A. The fStatus variable is set to the
status of the value. Four bit definitions are used to test the status as follows:

fStatus_Zero Zero status bit (0 – not zero; 1 – zero)
fStatus_Sign Sign status bit (0 – positive; 1 – negative)

Example:
Value CON 3 'current value (uM-FPU register 3)

 fA = Value 'get the status
 GOSUB LgetStatus

 IF (fStatus_Zero = 1) THEN DEBUG "Value is zero"
 IF (fStatus_Sign = 1) THEN DEBUG "Value is negative"

Lmultiply A = A * B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The long integer value in register A is multiplied by the long integer value in register B
and the result is stored in register A.

Example:
Total CON 5 'total (uM-FPU register 5)
Value CON 6 'current value (uM-FPU register 6)

 fA = Total 'Total = Total * Value
 fB = Value
 GOSUB Lmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 37 Using the uM-FPU with the BASIC Stamp

Lnegate A = -A

Parameters: fA uM-FPU register number
Return: none

Description: Calculates the negative of the long integer value in register A, and stores the result in
register A.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = -Value
 GOSUB Fnegate

Lset A = B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: Sets the value of register A to the value of register B.

Example:
L100 CON 1 'constant 500000 (uM-FPU register 1)
Total CON 5 'total (uM-FPU register 5)

 fA = Total 'total = 500000
 fB = L100
 GOSUB Lset

Lsubtract A = A – B

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The long integer value in register B is subtracted from the long integer value in register A
and the result is stored in register A.

Example:
Total CON 5 'total (uM-FPU register 5)
Value CON 6 'current value (uM-FPU register 6)

 fA = Total 'Total = Total - Value
 fB = Value
 GOSUB Lsubtract

Lucompare Compare A and B (unsigned)

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: fStatus set to the status of the comparison

Description: Compare the unsigned long integer value in register A with the unsigned long integer
value in register B. The status of the result is stored in the fStatus variable. The status is

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 38 Using the uM-FPU with the BASIC Stamp

positive if the value in register A is greater than the value in register B. The status is
negative if the value in register A is less than the value in register B. The status is zero if
the value in register A is equal to the value in register B. Bit definitions are used to test
the status as follows:

fStatus_Zero Zero status bit (0 if A not equal to B; 1 if A equals B)
fStatus_Sign Sign status bit (0 if A is greater than B; 1 if A is less than B)

Special case: • if either value is NaN, then the result is NaN

Example:
Value1 CON 6 'First value (uM-FPU register 6)
Value2 CON 7 'Second value (uM-FPU register 7)

 fA = Value1 'compare Value1 and Value2
 fB = Value2
 GOSUB Lcompare

 IF (fStatus_Zero = 1) THEN
 DEBUG "Value1 = Value2"
 ELSEIF (fStatus_Sign = 1) THEN
 DEBUG "Value1 < Value2"
 ELSE
 DEBUG "Value1 > Value2"
 ENDIF

Ludivide A = A / B (unsigned)

Parameters: fA uM-FPU register number
fB uM-FPU register number

Return: none

Description: The unsigned long integer value in register A is divided by the unsigned long integer
value in register B and the result is stored in register A. If the value in register B is zero
(divide by zero), register A will be set to the largest unsigned long integer ($FFFFFFFF).
The remainder of the division is stored in register 0.

Example:
Total CON 5 'total (uM-FPU register 5)
Value CON 6 'current value (uM-FPU register 6)
Rem CON 7 'remainder (uM-FPU register 7)

 fA = Total 'Total = Total / Value
 fB = Value
 GOSUB Ldivide

 fA = Rem 'set Rem to the remainder
 fB = 0
 GOSUB Lset

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 39 Using the uM-FPU with the BASIC Stamp

Load Routines

Load_E Load register 0 with floating point value of e (2.7182818)

Parameters: none
Return: fB set to 0

Description: Loads register 0 with the floating point value of e(2.7182818). The fB variable is set to
zero. Another command that uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * e
 GOSUB Load_E
 GOSUB Fmultiply

Load_Float Load register 0 with floating point value

Parameters: fHigh high 16-bits of floating point number
fLow low 16-bits of floating point number

Return: fB set to 0

Description: Loads the floating point value passed in fHigh and fLow to register 0. The fB variable is
set to zero. Another command that uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value / 10.0
 fHigh = $4120 'high 16 bits of the value 10.0
 fLow = $0000 'low 16 bits of the value 10.0
 GOSUB Load_Float
 GOSUB Fdivide

Load_FloatByte Load register 0 with 8-bit signed integer converted to floating point

Parameters: flow.LOWBYTE 8-bit signed integer value
Return: fB set to 0

Description: Loads the 8-bit unsigned integer value passed in flow.LOWBYTE into register 0, and
converts it to a floating point value. The fB variable is set to zero. Another command that
uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * -10
 flow.LOWBYTE = -10
 GOSUB Load_FloatByte
 GOSUB Fmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 40 Using the uM-FPU with the BASIC Stamp

Load_FloatData Load register 0 with floating point value in EEPROM

Parameters: fAddr EEPROM address of the constant
Return: fB set to 0

Description: Loads a floating point constant from EEPROM to register 0. The EEPROM address is
passed in fAddr. The fB variable is set to zero. Another command that uses the value in
register 0 can follow immediately.

Example:
Pi DATA $40, $49, $0F, $DB 'pi = 3.1415927

 fA = Value 'Value = Value * pi
 fAddr = Pi
 GOSUB Load_FloatData
 GOSUB Fmultiply

Load_FloatStr Load register 0 with floating point string in EEPROM

Parameters: fAddr EEPROM address of the constant
Return: fB set to 0

Description: Loads a string from EEPROM at the address specified by fAddr, and sends it to the uM-
FPU where it is converted to a floating point value and stored in register 0. The fB
variable is set to zero. Another command that uses the value in register 0 can follow
immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
PiStr DATA "3.1415927", 0 'zero terminated string

fA = Value 'Value = Value * Pi
fAddr = PiStr
GOSUB Load_FloatStr
GOSUB Fmultiply

Load_FloatUByte Load register 0 with 8-bit unsigned integer converted to floating point

Parameters: flow.LOWBYTE 8-bit unsigned integer value
Return: fB set to 0

Description: Loads the 8-bit unsigned integer value passed in flow.LOWBYTE into register 0, and
converts it to a floating point value. The fB variable is set to zero. Another command that
uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * 10
 flow.LOWBYTE = 10
 GOSUB Load_FloatUByte
 GOSUB Fmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 41 Using the uM-FPU with the BASIC Stamp

Load_Fraction Load register 0 with the fractional part of A

Parameters: fA uM-FPU register number
Return: none

Description: Loads register 0 with the fractional part the floating point value in register A..

Special cases: • if the value is NaN or infinity, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'get the fractional part of Value
 GOSUB Load_Fraction

Load_FloatUWord Load register 0 with 16-bit unsigned integer converted to floating point

Parameters: fLow 16-bit unsigned integer value
Return: fB set to 0

Description: Loads the 16-bit signed integer value passed in fLow into register 0, and converts it to a
floating point value. The fB variable is set to zero. Another command that uses the value
in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * 1000
 fLow = 1000
 GOSUB Load_FloatUWord
 GOSUB Fmultiply

Load_FloatWord Load register 0 with 16-bit signed integer converted to floating point

Parameters: fLow 16-bit unsigned integer value
Return: fB set to 0

Description: Loads the 16-bit unsigned integer value passed in fLow into register 0, and converts it to
a floating point value. The fB variable is set to zero. Another command that uses the
value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * -1000
 fLow = -1000
 GOSUB Load_FloatWord
 GOSUB Fmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 42 Using the uM-FPU with the BASIC Stamp

Load_Fraction Load register 0 with the fractional part of A

Parameters: fA uM-FPU register number
Return: none

Description: Loads register 0 with the fractional part the floating point value in register A..

Special cases: • if the value is NaN or infinity, then the result is NaN

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'get the fractional part of Value
 GOSUB Load_Fraction

Load_Long Load register 0 with long integer value

Parameters: fHigh high 16-bits of long integer
fLow low 16-bits of long integer

Return: fB set to 0

Description: Loads a long integer value to register 0. The fB variable is set to zero. Another command
that uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value / 10
 fHigh = 0 'high 16 bits of the value 10
 fLow = 10 'low 16 bits of the value 10
 GOSUB Load_Long
 GOSUB Ldivide

Load_LongByte Load register 0 with 8-bit signed integer converted to long integer

Parameters: fLow 8-bit signed integer value
Return: fB set to 0

Description: Loads the 8-bit integer value passed in the fLow variable into register 0, and converts it
to a long integer value. The fB variable is set to zero. Another command that uses the
value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
intValue VAR byte 'integer value

 fA = Value 'Value = intValue
 flow.LOWBYTE = intValue
 GOSUB Load_LongByte
 GOSUB Fset

 fA = Value 'Value = Value * -10
 fLow = -10
 GOSUB Load_LongByte
 GOSUB Fmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 43 Using the uM-FPU with the BASIC Stamp

Load_LongData Load register 0 with long integer value in EEPROM

Parameters: fAddr EEPROM address of the constant
Return: fB set to 0

Description: Loads a long integer constant from EEPROM to register 0. The EEPROM address is
specified by fAddr. The fB variable is set to zero. Another command that uses the value
in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
L500K DATA $00, $07, $A1, $20 'constant 500000

 fA = Value 'Value = Value * 500000
 fAddr = L500K
 GOSUB Load_LongData
 GOSUB Lmultiply

Load_LongStr Load register 0 with long integer string in EEPROM

Parameters: fAddr EEPROM address of the constant
Return: fB set to 0

Description: Loads a string from EEPROM at the address specified by fAddr, and sends it to the uM-
FPU where it is converted to a long integer value and stored in register 0. The fB variable
is set to zero. Another command that uses the value stored in register 0 can follow
immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
L500KStr DATA "500000", 0 'zero terminated string

fA = Value 'Value = Value * 500000
fAddr = L500KStr
GOSUB Load_LongStr
GOSUB Lmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 44 Using the uM-FPU with the BASIC Stamp

Load_LongUbyte Load register 0 with 8-bit unsigned integer converted to long integer.

Parameters: fLow 16-bit signed integer value
Return: fB set to 0

Description: Loads the 16-bit integer value passed in the fLow variable into register 0, and converts it
to a long integer value. The fB variable is set to zero. Another command that uses the
value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
intValue VAR byte 'integer value

 fA = Value 'Value = intValue
 flow.LOWBYTE = intValue
 GOSUB Load_LongUByte
 GOSUB Fset

 fA = Value 'Value = Value * 1000
 fLow = 1000
 GOSUB Load_LongInt
 GOSUB Fmultiply

Load_LongUWord Load register 0 with 16-bit unsigned integer converted to long integer.

Parameters: fLow 16-bit signed integer value
Return: fB set to 0

Description: Loads the 16-bit integer value passed in the fLow variable into register 0, and converts it
to a long integer value. The fB variable is set to zero. Another command that uses the
value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
intValue VAR word 'integer value

 fA = Value 'Value = intValue
 fLow = intValue
 GOSUB Load_LongInt
 GOSUB Fset

 fA = Value 'Value = Value * 1000
 fLow = 1000
 GOSUB Load_LongInt
 GOSUB Fmultiply

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 45 Using the uM-FPU with the BASIC Stamp

Load_LongWord Load register 0 with 16-bit signed integer converted to long integer.

Parameters: fLow 16-bit signed integer value
Return: fB set to 0

Description: Loads the 16-bit integer value passed in the fLow variable into register 0, and converts it
to a long integer value. The fB variable is set to zero. Another command that uses the
value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
intValue VAR word 'integer value

 fA = Value 'Value = intValue
 fLow = intValue
 GOSUB Load_LongInt
 GOSUB Fset

 fA = Value 'Value = Value * -1000
 fLow = -1000
 GOSUB Load_LongInt
 GOSUB Fmultiply

Load_LongStr Load register 0 with long integer string in EEPROM.

Parameters: fAddr EEPROM address of the constant
Return: fB set to 0

Description: Loads a string from EEPROM at the address specified by fAddr, and sends it to the uM-
FPU where it is converted to a long integer value and stored in register 0. The fB variable
is set to zero. Another command that uses the value stored in register 0 can follow
immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)
L500KStr DATA "500000", 0 'zero terminated string

fA = Value 'Value = Value * 500000
fAddr = L500KStr
GOSUB Load_LongStr
GOSUB Lmultiply

Load_One Load register 0 with One.

Parameters: none
Return: fB set to 0

Description: Loads register 0 with a floating point value of 1.0. The fB variable is set to zero. Another
command that uses the value stored in register 0 can follow immediately. This routine
can be used to load a floating point zero or a long integer zero.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = 1.0
 GOSUB Load_One
 GOSUB Fset

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 46 Using the uM-FPU with the BASIC Stamp

Load_Pi Load register 0 with value of Pi.

Parameters: none
Return: fB set to 0

Description: Loads register 0 with the floating point value of pi (3.1415927). The fB variable is set to
zero. Another command that uses the value in register 0 can follow immediately.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = Value * pi
 GOSUB Load_Pi
 GOSUB Fmultiply

Load_Zero Load register 0 with Zero.

Parameters: none
Return: fB set to 0

Description: Loads register 0 with a value of zero. The fB variable is set to zero. Another command
that uses the value stored in register 0 can follow immediately. This routine can be used
to load a floating point zero or a long integer zero.

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'Value = 0.0
 GOSUB Load_Zero
 GOSUB Fset

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 47 Using the uM-FPU with the BASIC Stamp

Print Routines

Print_Float Display floating point value on the PC screen.

Parameters: fA uM-FPU register number
Return: none

Description: The floating point representation of the value in register A is displayed on the PC screen
using the DEBUG command. Up to eight significant digits will be displayed if required.
Very large or very small numbers are displayed in exponential notation. The length of the
displayed value is variable and can be from 3 to 12 characters in length. The special cases
of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of the
display format are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'print floating point value
 GOSUB Print_Float

Print_FloatFormat Display formatted floating point value on the PC screen.

Parameters: fA uM-FPU register number
fLow format specification

Return: none

Description: The formatted floating point representation of the value in register A is displayed on the
PC screen using the DEBUG command. The format is specified as a decimal value
passed in the fLow variable. The tens digit specifies the width of the display field and the
ones digit specifies the number of decimal points. If the floating point value is too large
for the format specified, then asterisks will be displayed. If the number of decimal points
is zero, no decimal point will be displayed. Examples of the display format are as
follows:

Value in register A fLow (format) Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

The maximum width of the field is 9 and the maximum number of decimal points is 6.
Example:

Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'print floating point value
 Fformat = 62 'format 6.2
 GOSUB Print_FloatFormat

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 48 Using the uM-FPU with the BASIC Stamp

Print_Hex Display 32-bit hexadecimal value on the PC screen.

Parameters: fA uM-FPU register number
Return: none

Description: The hexadecimal representation of the 32-bit value in register A is displayed on the PC
screen using the DEBUG command. An example of the display format is as follows:

$4049 0FDB
Example:

Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'print 32-bit hex value
 GOSUB Print_Hex

Print_Long Display signed long integer value on the PC screen.

Parameters: fA uM-FPU register number
Return: none

Description: The signed long integer representation of the value in register A is displayed on the PC
screen using the DEBUG command. The length of the displayed value is variable and can
range from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

Example:
Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'print long integer value
 GOSUB Print_Long

Appendix A – Reference for uM-FPU BASIC Stamp Routines

Micromega Corporation 49 Using the uM-FPU with the BASIC Stamp

Print_LongFormat Display formatted long integer value on the PC screen.

Parameters: fA uM-FPU register number
fLow format specification

Return: none

Description: The formatted long integer representation of the value in register A is displayed on the
PC screen using the DEBUG command. The format is specified as a decimal value
passed in the fLow variable. A value between 0 and 15 specifies the width of the display
field for a signed long integer. The number is displayed right justified. If 100 is added to
the format value the value is displayed as an unsigned long integer. If the value is larger
than the specified width, asterisks will be displayed. If the width is specified as zero, the
length will be variable. Examples of the display format are as follows:

Value in register A fLow (format) Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

The maximum width of the field is 15.
Example:

Value CON 5 'current value (uM-FPU register 5)

 fA = Value 'print long integer value
 Fformat = 10 'width is 10
 GOSUB Print_Long

Micromega Corporation 50 R20040429

Appendix B
Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of
precision to fit the scale of the number. Fixed point numbers can’t handle very large or very small numbers
and are prone to loss of precision when numbers are divided. The representation of floating point numbers
used by the uM-FPU is defined by the IEEE 754 standard.
The range of numbers that can be handled by the uM-FPU is approximately ± 1038.53.
.
IEEE 754 32-bit Floating Point Representation

IEEE floating point numbers have three components: the sign, the exponent, and the mantissa. The sign
indicates whether the number is positive or negative. The exponent has an implied base of two. The
mantissa is composed of the fraction.

The 32-bit IEEE 754 representation is as follows:

Exponent MantissaS

31 30 23 22 0

Sign Bit (S)
The sign bit is 0 for a positive number and 1 for a negative number.

Exponent
The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that
allows it to represent both positive and negative exponents. For example, if the exponent field is
128, it represents an exponent of one (128 – 127 = 1). An exponent field of all zeroes is used for
denormalized numbers and an exponent field of all ones is used for the special numbers +infinity,
-infinity and Not-a-Number (described below).

Mantissa
The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers
there is an implied leading bit equal to one.

Special Values

Zero
A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and
–0 are distinct values although they compare as equal.

Denormalized
If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended
range and a graceful transition towards zero on underflows. Note: The uM-FPU does not
support operations using denormalized numbers.

Infinity
The values +infinity and –infinity are denoted with an exponent of all ones and a fraction of
all zeroes. The sign bit distinguishes between +infinity and –infinity. This allows operations
to continue past an overflow. A nonzero number divided by zero will result in an infinity
value.

Appendix B – Floating Point Numbers

Micromega Corporation 51 Using the uM-FPU with the BASIC Stamp

Not A Number (NaN)
The value NaN is used to represent a value that does not represent a real number. An
operation such as zero divided by zero will result in a value of NaN. The NaN value will flow
through any mathematical operation. Note: The uM-FPU initializes all of its registers to NaN
at reset, therefore any operation that uses a register that has not been previously set with a
value will produce a result of NaN.

Some examples of IEEE 754 32-bit floating point values displayed as BASIC Stamp data constants are as
follows:

DATA $00, $00, $00, $00 '0.0
DATA $3D, $CC, $CC, $CD '0.1
DATA $3F, $00, $00, $00 '0.5
DATA $3F, $40, $00, $00 '0.75
DATA $3F, $7F, $F9, $72 '0.9999
DATA $3F, $80, $00, $00 '1.0
DATA $40, $00, $00, $00 '2.0
DATA $40, $2D, $F8, $54 '2.7182818 (e)
DATA $40, $49, $0F, $DB '3.1415927 (pi)
DATA $41, $20, $00, $00 '10.0
DATA $42, $C8, $00, $00 '100.0
DATA $44, $7A, $00, $00 '1000.0
DATA $44, $9A, $52, $2B '1234.5678
DATA $49, $74, $24, $00 '1000000.0
DATA $80, $00, $00, $00 '-0.0
DATA $BF, $80, $00, $00 '-1.0
DATA $C1, $20, $00, $00 '-10.0
DATA $C2, $C8, $00, $00 '-100.0
DATA $7F, $C0, $00, $00 'NaN (Not-a-Number)
DATA $7F, $80, $00, $00 '+inf
DATA $FF, $80, $00, $00 '-inf

